Binding proteins internalized by PTD-fused ligands allow the intracellular sequestration of selected targets by ligand exchange.
نویسندگان
چکیده
The targeted inactivation of intracellular molecules has important therapeutic potential. For this purpose, it could be envisioned to introduce specifically designed binding proteins into cells by covalent linkage to protein transduction domains (PTDs). However, stable linkage of a PTD to a cargo may affect its conformation and, hence, its binding property inside the cell. Here, we analyzed the ability of non-covalently linked PTDs to internalize the model binding proteins streptavidin (SA) and Strep-Tactin (ST). Notably, inside the cell, the PTD-Strep-tag II ligand used for internalization of SA was displaced by the model target biotin which exhibits a higher binding affinity for the same binding pocket. Thus, specifically designed binding proteins can be internalized into cells by non-covalent binding to a PTD and subsequently be used for capturing given intracellular target molecules by ligand exchange. Under therapeutic aspects, it could be envisioned to further develop such systems for the intracellular sequestration, and consequently, functional inactivation of pathologically relevant factors.
منابع مشابه
Ligand-based pharmacophore modeling to identify plant-derived acetylcholinesterase inhibitor natural compounds in Alzheimer’s disease
Background: Alzheimer’s disease (AD) is a neurodegenerative disease characterized by decreased cognitive function in patients due to forming Aβ peptides and neurofibrillary tangles (NFT) in the brain. Therefore, the need to develop new treatments can reduce this risk. Acetylcholinesterase is one of the targets used in the design of new drugs for the treatment of AD. The researchers obtain new i...
متن کاملDevelopment of aptameric affinity ligands specific to human plasma coagulation factor VIII using SEC-SELEX
Protein specific aptamers are highly applicable affinity ligands in different fields of research and clinical applications. They have been developed against various targets, in particular, bio-macromolecules such as proteins. Among human proteins, the coagulation factors are the most attractive targets for aptamer selection and their specific aptamers had valuable characteristics in therapeutic...
متن کاملDevelopment of aptameric affinity ligands specific to human plasma coagulation factor VIII using SEC-SELEX
Protein specific aptamers are highly applicable affinity ligands in different fields of research and clinical applications. They have been developed against various targets, in particular, bio-macromolecules such as proteins. Among human proteins, the coagulation factors are the most attractive targets for aptamer selection and their specific aptamers had valuable characteristics in therapeutic...
متن کاملIntracellular Dynamics of sst5 Receptors in Transfected COS-7 Cells: Maintenance of Cell Surface Receptors during Ligand-Induced Endocytosis1.
Internalization of G protein-coupled receptors is crucial for resensitization of phosphorylation-desensitized receptors, but also for their long term desensitization through sequestration. To elucidate the mechanisms regulating cell surface availability of the somatostatin (SRIF) receptor subtype sst5, we characterized its internalization properties in transfected COS-7 cells using biochemical,...
متن کاملInhibition of sequestration of human B2 bradykinin receptor by phenylarsine oxide or sucrose allows determination of a receptor affinity shift and ligand dissociation in intact cells.
Depending on their interaction with intracellular proteins, G protein-coupled receptors (GPCR) often display different affinities for agonists at 37 degrees C. Determining the affinity at that temperature is often difficult in intact cells as most GPCRs are internalized after activation. When sequestration of the B2 bradykinin receptor (B2R) was inhibited by either 0.5 M sucrose or phenylarsine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of molecular medicine
دوره 25 4 شماره
صفحات -
تاریخ انتشار 2010